RACK1 (receptor for activated C-kinase 1) interacts with FBW2 (F-box and WD-repeat domain-containing 2) to up-regulate GCM1 (glial cell missing 1) stability and placental cell migration and invasion.

نویسندگان

  • Chang-Chun Wang
  • Hsiao-Fan Lo
  • Shu-Yu Lin
  • Hungwen Chen
چکیده

GCM1 (glial cell missing 1) is a short-lived transcription factor essential for placental development. The F-box protein, FBW2 (F-box and WD-repeat domain-containing 2), which contains five WD (tryptophan-aspartate) repeats, recognizes GCM1 and mediates its ubiquitination via the SCFFBW2 E3 ligase complex. Although the interaction between GCM1 and FBW2 is facilitated by GCM1 phosphorylation, it is possible that this interaction might be regulated by additional cellular factors. In the present study, we perform tandem-affinity purification coupled with MS analysis identifying RACK1 (receptor for activated C-kinase 1) as an FBW2-interacting protein. RACK1 is a multifaceted scaffold protein containing seven WD repeats. We demonstrate that the WD repeats in both RACK1 and FBW2 are required for the interaction of RACK1 and FBW2. Furthermore, RACK1 competes with GCM1 for FBW2 and thereby prevents GCM1 ubiquitination, which is also supported by the observation that GCM1 is destabilized in RACK1-knockdown BeWo placental cells. Importantly, RACK1 knockdown leads to decreased expression of the GCM1 target gene HTRA4 (high-temperature requirement protein A4), which encodes a serine protease crucial for cell migration and invasion. As a result, migration and invasion activities are down-regulated in RACK1-knockdown BeWo cells. The present study reveals a novel function for RACK1 to regulate GCM1 activity and placental cell migration and invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RACK1 regulates neural development

Receptor for activated C kinase 1 (RACK1) is an evolutionarily conserved scaffolding protein within the tryptophan-aspartate (WD) repeat family of proteins. RACK1 can bind multiple signaling molecules concurrently, as well as stabilize and anchor proteins. RACK1 also plays an important role at focal adhesions, where it acts to regulate cell migration. In addition, RACK1 is a ribosomal binding p...

متن کامل

Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor.

Factor associated with neutral sphingomyelinase activation (FAN) represents a p55 TNFR (TNF-R55)-associated protein essential for the activation of neutral sphingomyelinase. By means of the yeast interaction trap system, we have identified the scaffolding protein receptor for activated C-kinase (RACK)1 as an interaction partner of FAN. Mapping studies in yeast revealed that RACK1 is recruited t...

متن کامل

RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix.

The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which ...

متن کامل

The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration.

The scaffolding protein, Rack1, is a seven-WD-domain-containing protein that has been implicated in binding to integrin beta subunit cytoplasmic domains and to members of two kinase families (src and protein kinase C, PKC) that mediate integrin bidirectional signaling. To explore the role of Rack1 in integrin function we have transfected this protein in Chinese hamster ovary (CHO) cells. We hav...

متن کامل

GATA3 inhibits GCM1 activity and trophoblast cell invasion

Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 453 2  شماره 

صفحات  -

تاریخ انتشار 2013